Saturday, December 22, 2012


DIhPWCJ
e tliha
aatesey
rmpahea
  :s rn
ft/eyst
rh/ o,h
irwju 
eiwo  
nlwia 
dl.nl 
sew l 
,dhm  
  ieh 
 tt a 
 oeip 
  hnp 
 io y 
 nuc  
 fsoh 
 oeno 
 r.gl 
 mgri 
  oad 
 yvta 
 o/uy 
 utls 
  ha  
 teta 
 h-in 
 apnd 
 trg  
  e a 
 osJ  
 usih 
 r-me 
  o a 
 ofol 
 wfnt 
 ni h 
  cty 
 Jeh  
 i/ia 
 m2sn 
  0 d 
 G1r  
 a2ij 
 t/co 
 e1hy 
 s2lo 
  /yu 
 h2 s 
 a1d  
 s/e2 
  ps0 
 bre1 
 eer3 
 esv. 
 nie  
  dd  
 ce   
 hnh  
 oto  
 s-n  
 eoo  
 nbr  
  a.  
 bm   
 yaH  
  -e  
 Ph   
 rod  
 eno  
 soe  
 irs  
 ds   
 e-s  
 nno  
 ta   
  tm  
 Oiu  
 boc  
 anh  
 m-   
 asf  
  -o  
 ttr  
 oo   
  pu  
 b-s  
 es!  
  c   
 ti   
 he   
 en   
  t   
 ri   
 es   
 ct   
 is   
 p-   
 ia   
 en   
 nd   
 t-   
  i   
 on   
 fn   
  o   
 tv   
 ha   
 et   
  o   
 Nr   
 as   
 t    
 i    
 o    
 n    
 a    
 l    
      
 M    
 e    
 d    
 a    
 l    
      
 o    
 f    
      
 S    
 c    
 i    
 e    
 n    
 c    
 e    
 ,    
      
 t    
 h    
 e    
      
 h    
 i    
 g    
 h    
 e    
 s    
 t    
      
 h    
 o    
 n    
 o    
 r    
      
 b    
 e    
 s    
 t    
 o    
 w    
 e    
 d    
      
 b    
 y    
      
 t    
 h    
 e    
      
 U    
 n    
 i    
 t    
 e    
 d    
      
 S    
 t    
 a    
 t    
 e    
 s    
      
 g    
 o    
 v    
 e    
 r    
 n    
 m    
 e    
 n    
 t    
 .    

Friday, August 17, 2012

The S-Matrix, Time Reversal, And All That

The S-Matrix the description of physical scattering.  The way it works is this:  there is an "incoming" Hilbert space of states, and an "outgoing" Hilbert space of the same size of (possibly different) states.  These states are asymptotic, in the sense that they are thought to be infinitely far away from the region where any interaction occurs.

Suppose a generic incoming state is described by


so that the vector  ⃗α contains complete information about an incoming state, and that a generic outgoing state is described by
so that the vector ⃗a contains complete information about an outgoing state.

The S matrix is the matrix which takes incoming states and maps them to outgoing states:


Conservation of probability implies that S is unitary, ie S(S†)=1.

If we express the incoming and outgoing states in a momentum eigenbasis, it is easy to consider the action of time reversal.  First, the two Hilbert spaces change roles, so that the outgoing states become incoming states, and vice versa.  The coefficients ⃗a and ⃗α get complex conjugated (and change roles), and the momentum of each state gets reversed.  There is some other unitary matrix   ̃S satisfying

Time-reversal invariance is the statement processes that happen can also legitimately happen in reverse, meaning   ̃S = S.  If we multiply both sides of the original S-matrix relation by S† and then complex conjugate that relation, we conclude that S = ST.

That is, time reversal invariance implies that S is symmetric under transposition.